Class Decomposition via Clustering: A New Framework for Low-Variance Classifiers
نویسندگان
چکیده
We propose a pre-processing step to classification that applies a clustering algorithm to the training set to discover local patterns in the attribute or input space. We demonstrate how this knowledge can be exploited to enhance the predictive accuracy of simple classifiers. Our focus is mainly on classifiers characterized by high bias but low variance (e.g., linear classifiers); these classifiers experience difficulty in delineating class boundaries over the input space when a class distributes in complex ways. Decomposing classes into clusters makes the new class distribution easier to approximate and provides a viable way to reduce bias while limiting the growth in variance. Experimental results on real-world domains show an advantage in predictive accuracy when clustering is used as a preprocessing step to classification.
منابع مشابه
A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملImproving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملAn Empirical Study of the Suitability of Class Decomposition for Linear Models: When Does It Work Well?
The presence of sub-classes within a data sample suggests a class decomposition approach to classification, where each subclass is treated as a new class. Class decomposition can be effected using multiple linear classifiers in an attempt to outperform a single global linear classifier; the goal is to gain in model complexity while keeping error variance low. We describe a study aimed at unders...
متن کاملTwo-stage Stochastic Programing Based on the Accelerated Benders Decomposition for Designing Power Network Design under Uncertainty
In this paper, a comprehensive mathematical model for designing an electric power supply chain network via considering preventive maintenance under risk of network failures is proposed. The risk of capacity disruption of the distribution network is handled via using a two-stage stochastic programming as a framework for modeling the optimization problem. An applied method of planning for the net...
متن کاملEnsemble Methods Based on Bias–variance Analysis Title: Ensemble Methods Based on Bias–variance Analysis
Ensembles of classifiers represent one of the main research directions in machine learning. Two main theories are invoked to explain the success of ensemble methods. The first one consider the ensembles in the framework of large margin classifiers, showing that ensembles enlarge the margins, enhancing the generalization capabilities of learning algorithms. The second is based on the classical b...
متن کامل